Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698904

RESUMO

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Assuntos
Babesia , Camelus , Ehrlichia , Theileria , Carrapatos , Animais , Quênia/epidemiologia , Camelus/parasitologia , Camelus/microbiologia , Theileria/isolamento & purificação , Theileria/genética , Babesia/isolamento & purificação , Babesia/genética , Ehrlichia/isolamento & purificação , Ehrlichia/genética , Carrapatos/microbiologia , Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/parasitologia , Anaplasma/isolamento & purificação , Anaplasma/genética , Rickettsia/isolamento & purificação , Rickettsia/genética , Coxiella/isolamento & purificação , Coxiella/genética , Hemolinfa/microbiologia , Hemolinfa/parasitologia , Glândulas Salivares/microbiologia , Glândulas Salivares/parasitologia
2.
Parasite ; 31: 21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602373

RESUMO

Ticks are major vectors of various pathogens of health importance, such as bacteria, viruses and parasites. The problems associated with ticks and vector-borne pathogens are increasing in mountain areas, particularly in connection with global climate change. We collected ticks (n = 2,081) from chamois and mouflon in 4 mountainous areas of France. We identified 6 tick species: Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata and Dermacentor marginatus. We observed a strong variation in tick species composition among the study sites, linked in particular to the climate of the sites. We then analysed 791 ticks for DNA of vector-borne pathogens: Babesia/Theileria spp., Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, and Rickettsia of the spotted fever group (SFG). Theileria ovis was detected only in Corsica in Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) and Anaplasma phagocytophilum (3 sites) were detected in I. ricinus. Anaplasma ovis was detected at one site in I. ricinus and Rh. sanguineus s.l. SFG Rickettsia were detected at all the study sites: R. monacensis and R. helvetica in I. ricinus at the 3 sites where this tick is present; R. massiliae in Rh. sanguineus s.l. (1 site); and R. hoogstraalii and Candidatus R. barbariae in Rh. bursa in Corsica. These results show that there is a risk of tick-borne diseases for humans and domestic and wild animals frequenting these mountain areas.


Title: Prévalence d'agents pathogènes vectorisés chez des tiques collectées chez des ongulés sauvages (mouflons, chamois) dans 4 zones montagneuses en France. Abstract: Les tiques sont des vecteurs majeurs de différents agents pathogènes d'importance sanitaire, tels que des bactéries, des virus et des parasites. Les problématiques liées aux tiques et aux pathogènes vectorisés augmentent en zones de montagne, en lien notamment avec le réchauffement climatique. Nous avons collecté des tiques (n = 2 081) sur des chamois et des mouflons dans 4 zones montagneuses en France. Six espèces ont été identifiées : Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata et Dermacentor marginatus. Nous avons observé une forte variation de la composition en espèces de tiques entre les sites d'étude, en lien notamment avec le climat des sites. Nous avons ensuite recherché les ADN d'agents pathogènes vectorisés sur 791 tiques : Babesia/Theileria spp, Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, et de Rickettsia du groupe des fièvres boutonneuses (SFG). Theileria ovis a été détecté uniquement en Corse chez Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) et Anaplasma phagocytophilum (3 sites) ont été détectés chez I. ricinus. Anaplasma ovis a été détecté dans un site chez I. ricinus et Rh. sanguineus s.l.. Les Rickettsia SFG ont été détectées dans tous les sites d'étude : Rickettsia monacensis et R. helvetica chez I. ricinus dans les 3 sites où cette tique est présente; R. massiliae chez Rh. sanguineus s.l. (1 site); et R. hoogstraalii et Candidatus R. barbariae chez Rh. bursa en Corse. Ces résultats montrent un risque de transmission de maladies par les tiques pour les personnes et les animaux domestiques et sauvages fréquentant ces zones de montagne.


Assuntos
Anaplasma phagocytophilum , Babesia , Ixodes , Ixodidae , Rickettsia , Rupicapra , Theileria , Doenças Transmitidas por Carrapatos , Humanos , Animais , Ovinos , Carneiro Doméstico , Prevalência , Ixodes/microbiologia , Babesia/genética , Theileria/genética , Anaplasma phagocytophilum/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
3.
Parasit Vectors ; 17(1): 167, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566227

RESUMO

BACKGROUND: Hyalomma ticks are widely distributed in semi-arid zones in Northwest China. They have been reported to harbor a large number of zoonotic pathogens. METHODS: In this study, a total of 334 Hyalomma asiaticum ticks infesting domestic animals were collected from four locations in Xinjiang, Northwest China, and the bacterial agents in them were investigated. RESULTS: A putative novel Borrelia species was identified in ticks from all four locations, with an overall positive rate of 6.59%. Rickettsia sibirica subsp. mongolitimonae, a human pathogen frequently reported in Europe, was detected for the second time in China. Two Ehrlichia species (Ehrlichia minasensis and Ehrlichia sp.) were identified. Furthermore, two Anaplasma species were characterized in this study: Candidatus Anaplasma camelii and Anaplasma sp. closely related to Candidatus Anaplasma boleense. It is the first report of Candidatus Anaplasma camelii in China. CONCLUSIONS: Six bacterial agents were reported in this study, many of which are possible or validated pathogens for humans and animals. The presence of these bacterial agents may suggest a potential risk for One Health in this area.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/microbiologia , Rickettsia/genética , Ixodidae/microbiologia , Ehrlichia , Anaplasma , China
4.
Parasit Vectors ; 17(1): 196, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685096

RESUMO

BACKGROUND: Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS: Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS: Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS: This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.


Assuntos
Ixodes , Rickettsia , Animais , Ixodes/microbiologia , Itália/epidemiologia , Argélia/epidemiologia , Rickettsia/isolamento & purificação , Rickettsia/genética , Rickettsia/classificação , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Prevalência , Borrelia/genética , Borrelia/isolamento & purificação , Borrelia/classificação , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/isolamento & purificação , Anaplasma phagocytophilum/classificação , Feminino , Hibridização Genética , Masculino , RNA Ribossômico 16S/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/classificação
5.
Vet Parasitol Reg Stud Reports ; 50: 101007, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38644036

RESUMO

The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.


Assuntos
Anaplasma , Doenças do Cão , Filogenia , RNA Ribossômico , Rhipicephalus sanguineus , Infestações por Carrapato , Animais , Cães , Hungria , Rhipicephalus sanguineus/microbiologia , Doenças do Cão/parasitologia , Doenças do Cão/diagnóstico , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Feminino , Masculino , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Rickettsia conorii/isolamento & purificação , Rickettsia conorii/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Gatos/parasitologia , Ehrlichia canis/isolamento & purificação , Ehrlichia canis/genética
6.
Exp Appl Acarol ; 92(3): 479-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457048

RESUMO

Tick-borne pathogens (TBPs) represent a substantial threat to cattle globally, exerting adverse impacts on production, health, and economic viability. This study delves into the prevalence and implications of TTBPs in cattle sourced from resource-limited smallholder livestock farms situated in southeastern Iran, proximate to Afghanistan and Pakistan. Blood and tick specimens were systematically collected from a cohort of 230 cattle, comprising 150 asymptomatic and 80 symptomatic individuals. Genomic DNA isolated from blood samples underwent rigorous examination for the presence of key TBPs, including Anaplasma marginale, A. phagocytophilum, A. bovis, A. centrale, Babesia bigemina, and Theileria annulata, utilizing multiple genetic markers. Nucleotide sequence analysis facilitated the reconstruction of phylogenetic relationships. The study also evaluated various potential risk factors, such as clinical status, gender, age, breed, tick infestation, and management practices, to elucidate their associations with TTBPs. Among the cattle cohort, a staggering 87.8% (202/230) tested positive for at least one pathogen. Prevalence statistics encompassed A. marginale (72.2%), T. annulata (68.3%), A. phagocytophilum/A. platys-like complex (66.1%), A. centrale (16.7%), B. bigemina (10.0%), and A. bovis (6.1%). Remarkably, mixed infections involving two, three, and four pathogens were detected in 23%, 52.1%, and 2.2% of animals, respectively. Notably, all asymptomatic cattle were positive for at least one TBP. Tick infestation was observed in 62.2% (143/230) of cattle, predominantly caused by Hyalomma anatolicum (82.5%), Rhipicephalus (Boophilus) annulatus (13.1%), and R. sanguineus sensu lato (4.4%). Risk factors linked to TBPs encompassed tick infestation, older age, and crossbred animals. Clinical presentations among symptomatic cattle encompassed fever, anemia, weight loss, anorexia, jaundice, and enlarged superficial lymph nodes. This study underscores the pivotal role of asymptomatic carriers in the propagation of TTBPs within endemic regions. Furthermore, it emphasizes the potential for the implementation of molecular diagnostics to unmask subclinical infections, thereby affording the opportunity for targeted interventions aimed at ameliorating the burden of TTBPs in resource-constrained smallholder dairy farms.


Assuntos
Doenças dos Bovinos , Filogenia , Animais , Bovinos , Irã (Geográfico)/epidemiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Feminino , Masculino , Fatores de Risco , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Babesia/isolamento & purificação , Babesia/genética , Prevalência , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Theileriose/epidemiologia , Theileriose/parasitologia , Babesiose/epidemiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
7.
Zoonoses Public Health ; 71(4): 442-450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485205

RESUMO

AIMS: Urban green spaces are locations of maximal human activity, forming areas of enhanced risk for tick-borne disease (TBD) transmission. Being also limited in spatial scale, green spaces form prime targets for control schemes aiming to reduce TBD risk. However, for effective control, the key species maintaining local tick and tick-borne pathogen (TBP) populations must be identified. To determine how patterns of host utilization vary spatially, we utilized blood meal analysis to study the contributions of voles, shrews, squirrels, leporids and cervids towards blood meals and the acquisition of TBPs of juvenile Ixodes ricinus in urban and sylvatic areas in Finland. METHODS AND RESULTS: A total of 1084 nymphs were collected from the capital city of Finland, Helsinki and from a sylvatic island in southwestern Finland, and subjected to qPCR analysis to identify DNA remnants of the previous host. We found significant differences in host contributions between urban and sylvatic environments. Specifically, squirrels and leporids were more common hosts in urban habitats, whereas cervids and voles were more common in sylvatic habitats. In addition to providing 18.4% of larval blood meals in urban habitats, red squirrels were identified as the source of 28.6% (n = 48) of Borrelia afzelii detections and 58.1% (n = 18) of Borrelia burgdorferi sensu stricto detections, indicating an important role for local enzootic cycles. CONCLUSIONS: Our study highlights that the key hosts maintaining tick and TBP populations may be different in urban and sylvatic habitats. Likewise, hosts generally perceived as important for upkeep may have limited importance in urban environments. Consequently, targeting control schemes based on off-site data of host importance may lead to suboptimal results.


Assuntos
Ecossistema , Ixodes , Animais , Ixodes/microbiologia , Finlândia/epidemiologia , Ninfa/microbiologia , Humanos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Comportamento Alimentar , Cidades
8.
Acta Trop ; 254: 107197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554993

RESUMO

Dermacentor (Indocentor) auratus Supino, 1897 occurs in many regions of Southeast Asia and South Asia. In many regions of Southeast Asia and South Asia, targeted tick sampling and subsequent screening of collected D. auratus ticks have detected pathogenic bacteria and viruses in D. auratus. These disease-causing pathogens that have been detected in D. auratus include Anaplasma, Bartonella, Borrelia, Rickettsia (including spotted fever group rickettsiae), African swine fever virus, Lanjan virus, and Kyasanur forest disease virus. Although D. auratus predominantly infests wild pigs, this tick is also an occasional parasite of humans and other animals. Indeed, some 91 % of human otoacariasis cases in Sri Lanka were due to infestation by D. auratus. With the propensity of this tick to feed on multiple species of hosts, including humans, and the detection of pathogenic bacteria and viruses from this tick, D. auratus is a tick of medical, veterinary, and indeed zoonotic concern. The geographic range of this tick, however, is not well known. Therefore, in the present paper, we used the species distribution model, BIOCLIM, to project the potential geographic range of D. auratus, which may aid pathogen and tick-vector surveillance. We showed that the potential geographic range of D. auratus is far wider than the current geographic distribution of this tick, and that regions in Africa, and in North and South America seem to have suitable climates for D. auratus. Interestingly, in Southeast Asia, Borneo and Philippines also have suitable climates for D. auratus, but D. auratus has not been found in these regions yet despite the apparent close proximity of these regions to Mainland Southeast Asia, where D. auratus occurs. We thus hypothesize that the geographic distribution of D. auratus is largely dependent on the movement of wild pigs and whether or not these wild pigs are able to overcome dispersal barriers. We also review the potential pathogens and the diseases that may be associated with D. auratus and provide an updated host index for this tick.


Assuntos
Dermacentor , Animais , Dermacentor/microbiologia , Dermacentor/virologia , Humanos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/virologia , Suínos , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Sudeste Asiático/epidemiologia , Rickettsia/isolamento & purificação , Rickettsia/classificação , Ásia , Zoonoses/parasitologia
9.
Front Public Health ; 12: 1302133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487180

RESUMO

Ticks are one of the most important vectors that can transmit pathogens to animals and human beings. This study investigated the dominant tick-borne bacteria carried by ticks and tick-borne infections in forestry populations in Arxan, Inner Mongolia, China. Ticks were collected by flagging from May 2020 to May 2021, and blood samples were collected from individuals at high risk of acquiring tick-borne diseases from March 2022 to August 2023. The pooled DNA samples of ticks were analyzed to reveal the presence of tick-borne bacteria using high-throughput sequencing of the 16S rDNA V3-V4 region, and species-specific polymerase chain reaction (PCR) related to sequencing was performed to confirm the presence of pathogenic bacteria in individual ticks and human blood samples. All sera samples were examined for anti-SFGR using ELISA and anti-B. burgdorferi using IFA and WB. A total of 295 ticks (282 Ixodes persulcatus and 13 Dermacentor silvarum) and 245 human blood samples were collected. Rickettsia, Anaplasma, Borrelia miyamotoi, and Coxiella endosymbiont were identified in I. persulcatus by high-throughput sequencing, while Candidatus R. tarasevichiae (89.00%, 89/100), B. garinii (17.00%, 17/100), B. afzelii (7.00%, 7/100), and B. miyamotoi (7.00%, 7/100) were detected in I. persulcatus, as well the dual co-infection with Candidatus R. tarasevichiae and B. garinii were detected in 13.00% (13/100) of I. persulcatus. Of the 245 individuals, B. garinii (4.90%, 12/245), R. slovaca (0.82%, 2/245), and C. burnetii (0.41%, 1/245) were detected by PCR, and the sequences of the target genes of B. garinii detected in humans were identical to those detected in I. persulcatus. The seroprevalence of anti-SFGR and anti-B. burgdorferi was 5.71% and 13.47%, respectively. This study demonstrated that Candidatus R. tarasevichiae and B. garinii were the dominant tick-borne bacteria in I. persulcatus from Arxan, and that dual co-infection with Candidatus R. tarasevichiae and B. garinii was frequent. This is the first time that B. miyamotoi has been identified in ticks from Arxan and R. solvaca has been detected in humans from Inner Mongolia. More importantly, this study demonstrated the transmission of B. garinii from ticks to humans in Arxan, suggesting that long-term monitoring of tick-borne pathogens in ticks and humans is important for the prevention and control of tick-borne diseases.


Assuntos
Coinfecção , Ixodes , Doenças Transmitidas por Carrapatos , Animais , Humanos , Agricultura Florestal , Estudos Soroepidemiológicos , Ixodes/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
10.
PLoS Negl Trop Dis ; 18(2): e0011973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381797

RESUMO

While in much of the Western world snakes are feared, in the small, rural, mountainous town of Cocullo, in the middle of central Italy, snakes are annually collected and celebrated in a sacro-profane ritual. Every 1st of May, Serpari (snake catchers) capture and showcase dozens of non-venomous snakes to celebrate the ritual of San Domenico. In order to detect potential zoonotic pathogens within this unique epidemiological context, parasites and microorganisms of snakes harvested for the "festa dei serpari" ritual were investigated. Snakes (n = 112) were examined and ectoparasites collected, as well as blood and feces sampled. Ectoparasites were identified morpho-molecularly, and coprological examination conducted through direct smear and flotation. Molecular screenings were performed to identify parasites and microorganisms in collected samples (i.e., Mesostigmata mites, Anaplasma/Ehrlichia spp., Rickettsia spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Babesia/Theileria spp., Cryptosporidium spp., Giardia spp., Leishmania spp. and helminths). Overall, 28.5% (32/112) of snakes were molecularly positive for at least one parasite and/or microorganism. Endosymbiont Wolbachia bacteria were identified from Macronyssidae mites and zoonotic vector-borne pathogens (e.g., Rickettsia, Leishmania), as well as orally transmitted pathogens (i.e., Cryptosporidium, Giardia, Proteus vulgaris, Pseudomonas), were detected from blood and feces. Thus, given the central role of the snakes in the tradition of Cocullo, surveys of their parasitic fauna and associated zoonotic pathogens may aid to generate conservation policies to benefit the human-snake interactions, whilst preserving the cultural patrimony of this event.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Doenças Transmitidas por Carrapatos/microbiologia , Itália/epidemiologia
11.
Acta Trop ; 252: 107138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307363

RESUMO

Ticks are small and adaptable arachnid ectoparasites and global carriers of various pathogens that threaten both human and animal health. They are present in many parts of China. A total of 858 ticks were collected from various regions and hosts, then subjected to species identification based on morphological and molecular characteristics, as described in the authors' previous study. Eighty-three individual tick samples were selected for screening pathogens based on metagenomic next-generation sequencing (mNGS) and polymerase chain reaction (PCR) assays. The genomic DNA of tick species was extracted, and amplification of the bacterial 16S rRNA gene was carried out from DNA of individual ticks using V3-V4 hypervariable regions, before subjecting to metagenomic analysis. Each tick underwent specific PCR tests for identifying the bacterial species present, including Anaplasma, Ehrlichia, Coxiella, and Rickettsia, and also protozoans such as Babesia, Theileria, and Hepatozoon. Illumina NovaSeq sequencing results revealed that the dominant phylum and family in Rhipicephalus spp. were Bacteroidota and Muribaculaceae, respectively. Alpha diversity patterns varied depending on tick sex (R. linnaei only), species and location, but not on host. Furthermore, bacterial pathogens, including A. marginale (58 %, 29/50), A. platys (6 %, 3/50), E. minasensis (2 %, 1/50), Ehrlichia sp. (10 %, 5/50), T. sinensis (24 %, 12/50), T. orientalis (54 %, 27/50) and Coxiella-like bacteria (CLB) (80 %, 40/50) were detected in R. microplus, while E. canis (33.33 %, 10/30), H. canis (20 %, 6/30) and CLB (100 %, 30/30) were detected in R. linnaei. Also, Anaplasma sp. (33.33 %, 1/3), A. marginale (33.33 %, 1/3), R. felis (33.33 %, 1/3) and CLB (100 %, 3/3) were detected in R. haemaphysaloides. Dual and triple co-infections involving pathogens or CLB were detected in 84.00 % of R. microplus, 66.66 % of R. haemaphysaloides, and 33.00 % of R. linnaei. The report on microbial communities and pathogens, which found from Rhipicephalus spp. in Hainan Island, is an important step towards a better understanding of tick-borne disease transmission. This is the first report in the area on the presence of Anaplasma sp., A. marginale, R. felis and Coxiella, in R. haemaphysaloides.


Assuntos
Ixodidae , Rhipicephalus , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Cães , Humanos , Ixodidae/genética , Ixodidae/microbiologia , Rhipicephalus/genética , RNA Ribossômico 16S/genética , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Ehrlichia/genética , Rickettsia/genética , Anaplasma/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala
12.
Comp Immunol Microbiol Infect Dis ; 105: 102113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176202

RESUMO

Ticks are obligate ectoparasites and vectors of pathogens affecting health, agriculture, and animal welfare. This study collected ticks from the cattle and questing ticks of 24 Magdalena Medio Antioquia region cattle farms. Genomic DNA was extracted from the specimens (individual or pools) of the 2088 adult ticks collected from cattle and 4667 immature questing ticks collected from pastures. The molecular detection of Babesia, Anaplasma, Coxiella and Rickettsia genera was performed by polymerase chain reaction amplification and subsequent DNA sequencing. In a total of 6755 Rhipicephalus microplus DNA samples, Anaplasma marginale was the most detected with a frequency of 2% (Confidence Interval- CI 1.68-2.36), followed by Babesia bigemina with 0.28% (CI 0.16-0.44), Coxiella spp. with 0.15% (CI 0.07-0.27), and Rickettsia spp. with 0.13% (CI 0.06-0.25). Molecular analysis of the DNA sequences obtained from the tick samples revealed the presence of Coxiella-like endosymbiont and R. felis. These results demonstrated the diversity of microorganisms present in R. microplus ticks predominantly associated with cattle and questing ticks from livestock agroecosystems, suggesting their role as reservoirs and potential biological vectors of these microorganisms on the studied sites. Also, it emphasizes the need to combine acarological surveillance with clinical diagnoses and control strategies on regional and national levels.


Assuntos
Babesia , Doenças dos Bovinos , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Bovinos , Carrapatos/microbiologia , Gado/parasitologia , Colômbia/epidemiologia , Babesia/genética , Rickettsia/genética , Doenças dos Bovinos/microbiologia , DNA , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
13.
Parasit Vectors ; 17(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178247

RESUMO

BACKGROUND: Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS: A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS: The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS: Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.


Assuntos
Doenças do Cão , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Humanos , Animais , Cães , Filogenia , Estudos Transversais , Microfluídica , Anaplasma/genética , Ehrlichia canis/genética , Rhipicephalus sanguineus/microbiologia , Reação em Cadeia da Polimerase , Doenças do Cão/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
14.
Am J Trop Med Hyg ; 110(3): 491-496, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38295420

RESUMO

The threats from vector-borne pathogens transmitted by ticks place people (including deployed troops) at increased risk for infection, frequently contributing to undifferentiated febrile illness syndromes. Wild and domesticated animals are critical to the transmission cycle of many tick-borne diseases. Livestock can be infected by ticks, and serve as hosts to tick-borne diseases such as rickettsiosis. Thus, it is necessary to identify the tick species and determine their potential to transmit pathogens. A total of 1,493 adult ticks from three genera-Amblyomma, Hyalomma, and Rhipicephalus-were identified using available morphological keys and were pooled (n = 541) by sex and species. Rickettsia species were detected in 308 of 541 (56.9%) pools by genus-specific quantitative polymerase chain reaction assay (Rick17b). Furthermore, sequencing of the outer membrane protein A and B genes (ompA and ompB) of random samples of Rickettsia-positive samples led to the identification of Rickettsia aeschlimannii and Rickettsia africae with most R. africae DNA (80.2%) detected in pools of Amblyomma variegatum. We report the first molecular detection and identification of the rickettsial pathogens R. africae and R. aeschlimannii in ticks from Ghana. Our findings suggest there is a need to use control measures to prevent infections from occurring among human populations in endemic areas in Ghana. This study underscores the importance of determining which vector-borne pathogens are in circulation in Ghana. Further clinical and prevalence studies are needed to understand more comprehensively the clinical impact of these rickettsial pathogens contributing to human disease and morbidity in Ghana.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Adulto , Humanos , Carrapatos/microbiologia , Gana/epidemiologia , Rickettsia/genética , Doenças Transmitidas por Carrapatos/microbiologia
15.
Parasitol Int ; 100: 102860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199521

RESUMO

Molecular surveillance of canine tick-borne pathogens (TBPs) in Bangladesh has constantly been undervalued. Therefore, the emergence of new pathogens often remains undetected. This study aimed to screen tick-borne pathogens in stray dogs and ticks in the Dhaka metropolitan area (DMA). Eighty-five dog blood and 53 ticks were collected in six city districts of DMA from September 2022 to January 2023. The ticks were identified by morphology. Screening of TBPs was performed by polymerase chain reaction (PCR), followed by sequencing. The PCR assays were conducted to analyze the 18S rRNA (Babesia gibsoni, B. vogeli, and Hepatozoon canis), 16S rRNA (Anaplasma phagocytophilum, A. platys, and A. bovis), gltA (Ehrlichia canis and Rickettsia spp.), flagellin B (Borrelia spp.) and 16-23S rRNA (Bartonella spp.). Three tick species, Rhipicephalus sanguineus (50/53), R. microplus (1/53), and Haemaphysalis bispinosa (2/53), were identified. Babesia gibsoni (38 out of 85) and A. platys (7 out of 85) were detected in dog blood. In contrast, four pathogens, B. gibsoni (1 out of 53), B. vogeli (1 out of 53), H. canis (22 out of 53), and A. platys (1 out of 53), were detected in the ticks. However, the detection rates of TBPs in dog blood and ticks were not correlated in this study. The phylogenetic analyses suggested that a single genotype for each of the four pathogens is circulating in DMA. This study reports the existence of B. vogeli, H. canis, and A. platys in Bangladesh for the first time.


Assuntos
Babesia , Doenças do Cão , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Animais , Cães , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Bangladesh/epidemiologia , Filogenia , RNA Ribossômico 16S/genética , Babesia/genética , Rhipicephalus sanguineus/genética , Rhipicephalus sanguineus/microbiologia , Doenças do Cão/diagnóstico , Anaplasma/genética
16.
Ticks Tick Borne Dis ; 15(2): 102290, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38070273

RESUMO

Tick-borne microorganisms in many tick species and many areas of China are still not thoroughly investigated. In this study, 224 ticks including two species (Haemaphysalis longicornis and Haemaphysalis qinghaiensis) were collected from four cities in Hebei, Shandong, and Qinghai provinces, China. Ticks were screened for the presence of tick-borne bacterial microorganisms including Rickettsia, Anaplasmataceae (Anaplasma, Ehrlichia, Neoehrlichia, etc.), Coxiella, Borrelia, and Bartonella. Two Anaplasma species (Anaplasma ovis and Anaplasma capra) were detected in H. longicornis from Xingtai City of Hebei Province, with a positive rate of 3 % and 8 %, respectively. A Coxiella species was detected in H. longicornis ticks from all three locations in Hebei and Shandong provinces, with the positive rate ranging from 30 to 75 %. All the 16S and rpoB sequences were very similar (99.77-100 % identity) to Coxiella endosymbiont of Haemaphysalis ticks. An Ehrlichia species was detected in H. qinghaiensis (6/66, 9 %) from Xining City, Qinghai Province. The 16S and groEL sequences had 100 % and 97.40-97.85 % nucleotide identities to "Candidatus Ehrlichia pampeana" strains, respectively, suggesting that it may be a variant of "Candidatus Ehrlichia pampeana". All the ticks were negative for Rickettsia, Borrelia, and Bartonella. Because all the ticks were removed from goats or humans and were partially or fully engorged, it is possible that the microorganisms were from the blood meal but not vectored by the ticks. Our results may provide some information on the diversity and distribution of tick-borne pathogens in China.


Assuntos
Anaplasmataceae , Bartonella , Borrelia , Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ixodidae/microbiologia , Rickettsia/genética , Anaplasma/genética , Ehrlichia/genética , Bartonella/genética , Anaplasmataceae/genética , Borrelia/genética , Cabras , China/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
17.
Ticks Tick Borne Dis ; 15(2): 102293, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086248

RESUMO

Ticks are primary vectors for many tick-borne pathogens (TBPs) and pose a serious threat to veterinary and public health. Information on the presence of TBPs in Chinese Milu deer (Elaphurus davidianus) is limited. In this study, a total of 102 Chinese Milu deer blood samples were examined for Anaplasma spp., Theileria spp., Babesia spp., Rickettsia spp., and Borrelia spp., and three TBPs were identified: Anaplasma phagocytophilum (48; 47.1 %), Candidatus Anaplasma boleense (47; 46.1%), and Theileria capreoli (8; 7.8 %). Genetic and phylogenetic analysis of the 16S rRNA and 18S rRNA confirmed their identity with corresponding TBPs. To our knowledge, this is the first report on Candidatus A. boleense and T. capreoli detection in Chinese Milu deer. A high prevalence of A. phagocytophilum with veterinary and medical significance was identified in endangered Chinese Milu deer, which could act as potential zoonotic reservoirs. The identification of the TBPs in Chinese Milu deer provides useful information for the prevention and control of tick-borne diseases.


Assuntos
Cervos , Rickettsia , Theileria , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Carrapatos/microbiologia , Cervos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Rickettsia/genética , Anaplasma/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Theileria/genética , China/epidemiologia
18.
Vet Res Commun ; 48(2): 1037-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072901

RESUMO

Vector-borne diseases indulge in severe economic losses in the livestock industry by adversely affecting cattle breeding in tropical and subtropical zone countries, including Turkey, encompassing a wide land area representing diverse climatic conditions. This study aimed to investigate significant bovine tick-borne piroplasm, rickettsia, and some other bacterial agents by genus- or species-specific PCR and nested PCR techniques in Turkey. A total of 210 cattle blood samples were collected from sixteen provinces in different geographical regions of Turkey. PCR analyses were performed targeting the detection of Babesia/Theileria/Hepatozoon sp. 18S rRNA, Babesia/Theileria sp. 18S rRNA (V4), B. bigemina RAP-1a, B. bovis SBP-4, B. ovata AMA-1, B. naoaki AMA-1, T. annulata Tams-1, T. orientalis MPSP, T. mutans 18S rRNA, Anaplasma/Ehrlichia sp. 16S rRNA, A. marginale MSP4, A. bovis 16S rRNA, A. phagocytophilum 16S rRNA, A. capra 16S rRNA, E. ruminantium pSC20, Mycoplasma sp. 16S rRNA, and Coxiella burnetii 16S rRNA genes. Overall, 133 (63.3%) cattle were found to be infected with at least one of the following protozoan or bacterial pathogens; B. bovis, B. bigemina, B. occultans, T. annulata, T. orientalis, A. marginale, A. phagocytophilum, and Mycoplasma sp. The total prevalence of pathogens was determined as follows; 0.5% B. bovis, 0.5% B. bigemina, 1.4% B. occultans, 41.0% T. annulata, 1.4% T. orientalis, 10.5% A. marginale, 13.8% A. phagocytophilum, 0.5% A. bovis, 2.9% Uncultured Anaplasma sp., 0.5% E. minasensis, 0.5% Uncultured Ehrlichia sp., and 23.3% Mycoplasma sp. Moreover, large part of the total infection (n:133) was composed of single infections (63.9%); however, double (24.8%), triple (7.5%), quadruple (2.3%), and quintuple (1.5%) co-infections were also encountered. In addition to some bovine pathogens such as B. occultans, T. orientalis, A. bovis, M. wenyonii, and Candidatus Mycoplasma haemobos, which were rarely reported in Turkey, sequencing and phylogenetic analysis revealed the first detection of Uncultured Ehrlichia sp. (0.5%), and E. minasensis (0.5%) with 100% nucleotide sequence identities. The study also indicates that the spectrum of pathogens harbored by Turkish cattle is quite wide, and these pathogens cause multiple co-infections with various combinations, and T. annulata stands out as the primary bovine pathogen among them.


Assuntos
Anaplasmose , Babesia , Babesiose , Doenças dos Bovinos , Coinfecção , Theileria annulata , Theileriose , Doenças Transmitidas por Carrapatos , Carrapatos , Bovinos , Animais , Theileria annulata/genética , Theileriose/diagnóstico , Theileriose/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/veterinária , RNA Ribossômico 16S/genética , Babesiose/epidemiologia , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Carrapatos/genética , Carrapatos/microbiologia , Turquia/epidemiologia , Filogenia , RNA Ribossômico 18S/genética , Coinfecção/veterinária , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Babesia/genética , Ehrlichia/genética
19.
Microbiol Spectr ; 12(1): e0108623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38038450

RESUMO

IMPORTANCE: Ticks are second only to mosquitoes in their importance as vectors of disease agents; however, tick-borne diseases (TBDs) account for the majority of all vector-borne disease cases in the United States (approximately 76.5%), according to Centers for Disease Control and Prevention reports. Newly discovered tick species and their associated disease-causing pathogens, and anthropogenic and demographic factors also contribute to the emergence and re-emergence of TBDs. Thus, incorporating different tick control approaches based on a thorough knowledge of tick biology has great potential to prevent and eliminate TBDs in the future. Here we demonstrate that replication of a transovarially transmitted rickettsial endosymbiont depends on the tick's autophagy machinery but not on apoptosis. Our findings improve our understanding of the role of symbionts in tick biology and the potential to discover tick control approaches to prevent or manage TBDs.


Assuntos
Ixodes , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Ixodes/microbiologia , Rickettsia/genética , Doenças Transmitidas por Carrapatos/microbiologia
20.
Comp Immunol Microbiol Infect Dis ; 104: 102097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029723

RESUMO

The role of wildlife in the complex balance of tick-borne diseases within ecosystems is crucial, as they serve as hosts for tick carriers and reservoirs for the pathogens carried by these ticks. This study aimed to investigate the presence of zoonotic pathogenic bacteria in wildlife, specifically in hares and long-eared hedgehogs (Hemiechinus megalofis), in the eastern region of Iran. The focus was on the detection of Borrelia spp., Coxiella burnetii, Anaplasma spp., Francisella spp., and Leptospira spp., using the Nested-PCR method. We analyzed a total of 124 blood samples, and 196 ticks collected from hares and long-eared hedgehogs were analyzed. The Nested-PCR method was employed to identify the presence of zoonotic pathogenic bacteria DNA. Our study revealed the presence of these zoonotic pathogenic bacteria in both wildlife species, indicating their potential role as hosts and reservoirs for the ticks carrying these pathogens. The specific presence and prevalence of Borrelia spp., Coxiella burnetii, Anaplasma spp., Francisella spp., and Leptospira spp. were determined through the Nested-PCR method. This study contributes to the limited knowledge about the involvement of wild animals in the transmission of tick-borne diseases. By using the Nested-PCR method, we successfully identified the presence of zoonotic pathogenic bacteria in hares and long-eared hedgehogs. This study emphasizes the need for further research to better understand the ecological process of tick-borne diseases, particularly the role of wildlife in their spread. Such knowledge is crucial for wildlife conservation efforts and the management of tick-borne diseases, ultimately benefiting both animal and human health.


Assuntos
Borrelia , Coxiella burnetii , Francisella , Lebres , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ecossistema , Irã (Geográfico)/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Animais Selvagens/microbiologia , Coxiella burnetii/genética , Anaplasma/genética , Francisella/genética , Rickettsia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA